
LIS Developer’s Guide

Submitted under Task Agreement GSFC-CT-2

Cooperative Agreement Notice (CAN) CAN-00OES-01

Increasing Interoperability and Performance of
Grand Challenge Applications in the Earth, Space, Life, and Microgravity

Sciences

July 16, 2004

Version 3.1

History:
Revision Summary of Changes Date
3.1 Milestone “G” release July 16, 2004
3.0 Milestone “G” submission May 7, 2004
2.3 LIS 2.3 code release December 19, 2003

Initial revison

National Aeronautics and Space Administration
Goddard Space Flight Center

Greenbelt, Maryland 20771

1

Contents

1 Introduction 3

2 Background 4
2.1 LIS . 4
2.2 LIS driver . 4
2.3 Community Land Model (CLM) 5
2.4 The Community Noah Land Surface Model 6
2.5 Variable Infiltration Capacity (VIC) Model 6
2.6 GrADS-DODS Server . 7

3 Coding and Documentation Conventions 8
3.1 Coding conventions . 8
3.2 Documentation conventions . 8

4 Customizable Features in LIS 12
4.1 Function Tables . 12
4.2 Defining source directories for compilation 13
4.3 Defining components while building the executable 13

5 Customizing LIS to use new land surface models 17

6 Customizing LIS to use new forcing schemes 21

7 Customizing LIS for a new domain 24
7.1 Domain Example . 25

8 Customizing LIS for Input data 30
8.1 Soils data . 30
8.2 Vegetation data . 30
8.3 Meterorological data . 31

2

1 Introduction

This document describes some of the interoperable features in LIS and how to
use/extend them. The following sections describe the general development and
documentation practices recommended for using and extending LIS software,
followed by the guidelines for using the extensible features in LIS for customiza-
tion and improved functionality.

3

2 Background

This section provides some general information about the LIS project and land
surface modeling.

2.1 LIS

The primary goal of the LIS project is to build a system that is capable of
performing high resolution land surface modeling at high performance using
scalable computing technologies. The LIS software system consists of a number
of components: (1) LIS driver: the core software that integrates the use of land
surface models, data management techniques, and high performance computing.
(2) community land surface models such as CLM [2], Noah [4], and VIC [7], and
(3) Visualization and data management tools such as GrADS [3] -DODS [6]
server. One of the important design goals of LIS is to develop an interoperable
system to interface and interoperate with land surface modeling community and
other earth system models. LIS is designed using an object oriented, component-
based style. The adaptable interfaces in LIS can be used by the developers to
ease the cost of development and foster rapid prototyping and development of
applications. The following sections describe the main components of LIS.

2.2 LIS driver

The core of LIS software system is the LIS driver that controls program exe-
cution. The LIS driver is a model control and input/output system (consisting
of a number of subroutines, modules written in Fortran 90 source code) that
drives multiple offline one-dimensional LSMs. The one-dimensional LSMs such
as CLM and Noah, apply the governing equations of the physical processes of
the soil-vegetation-snowpack medium. These land surface models aim to charac-
terize the transfer of mass, energy, and momentum between a vegetated surface
and the atmosphere. When there are multiple vegetation types inside a grid
box, the grid box is further divided into ”tiles”, with each tile representing a
specific vegetation type within the grid box, in order to simulate sub-grid scale
variability.

The execution of the LIS driver starts with reading in the user specifica-
tions, including the modeling domain, spatial resolution, duration of the run,
etc. The LIS User’s Guide describes the exhaustive list of parameters specified
by the user. This is followed by the reading and computing of model parame-
ters. The time loop begins and forcing data is read, time/space interpolation is
computed and modified as necessary. Forcing data is used to specify the bound-
ary conditions to the land surface model. The LIS driver applies time/space
interpolation to convert the forcing data to the appropriate resolution required
by the model. The selected model is run for a vector of “tiles” and output and
restart files are written at the specified output interval.

Some of the salient features provided by the LIS driver include:

4

• Vegetation type-based “tile” or “patch” approach to simulate sub-grid
scale variability.

• Makes use of various satellite and ground-based observational systems.

• Derives model parameters from existing topography, vegetation, and soil
coverages.

• Extensible interfaces to facilitate incorporation of new land surface models,
forcing schemes.

• Uses a modular, object oriented style design that allows “plug and play”
of different features by allowing user to select only the components of
interest while building the executable.

• Ability to perform regional modeling (only on the domain of interest).

• Provides a number of scalable parallel processing modes of operation.

Please refer to the software design document for a detailed description of the
design of LIS driver. The LIS developer’s guide describes how to use the exten-
sible interfaces in LIS. The “plug and play” feature of different components is
described in this document.

2.3 Community Land Model (CLM)

CLM (Community Land Model) is a 1-D land surface model, written in Fortran
90, developed by a grass-roots collaboration of scientists who have an interest
in making a general land model available for public use. LIS currently uses
CLM version 2.0. CLM version 2.0 was released in May 2002. The source
code for CLM 2.0 is freely available from the National Center for Atmospheric
Research (NCAR) [2]. The CLM is used as the land model for the Community
Climate System Model (CCSM) (http://www.ccsm.ucar.edu/), which includes
the Community Atmosphere Model (CAM) (http://www.cgd.ucar.edu/cms/).
CLM is executed with all forcing, parameters, dimensioning, output routines,
and coupling performed by an external driver of the user’s design (in this case
done by LIS). CLM requires pre-processed data such as the land surface type,
soil and vegetation parameters, model initialization, and atmospheric boundary
conditions as input. The model applies finite-difference spatial discretization
methods and a fully implicit time-integration scheme to numerically integrate
the governing equations. The model subroutines apply the governing equations
of the physical processes of the soil-vegetation-snowpack medium, including the
surface energy balance equation, Richards’ [12] equation for soil hydraulics, the
diffusion equation for soil heat transfer, the energy-mass balance equation for
the snowpack, and the Collatz et al. [9] formulation for the conductance of
canopy transpiration.

5

2.4 The Community Noah Land Surface Model

The community Noah Land Surface Model is a stand-alone, uncoupled, 1-D col-
umn model freely available at the National Centers for Environmental Prediction
(NCEP; [4]). The name is an acronym representing the various developers of the
model (N: NCEP; O: Oregon State University, Dept. of Atmospheric Sciences;
A: Air Force (both AFWA and AFRL - formerly AFGL, PL); and H: Hydro-
logic Research Lab - NWS (now Office of Hydrologic Development – OHD)).
Noah can be executed in either coupled or uncoupled mode. It has been coupled
with the operational NCEP mesoscale Eta model [10] and its companion Eta
Data Assimilation System (EDAS) [13], and the NCEP Global Forecast System
(GFS) and its companion Global Data Assimilation System (GDAS). When
Noah is executed in uncoupled mode, near-surface atmospheric forcing data
(e.g., precipitation, radiation, wind speed, temperature, humidity) is required
as input. Noah simulates soil moisture (both liquid and frozen), soil temper-
ature, skin temperature, snowpack depth, snowpack water equivalent, canopy
water content, and the energy flux and water flux terms of the surface energy
balance and surface water balance. The model applies finite-difference spatial
discretization methods and a Crank-Nicholson time-integration scheme to nu-
merically integrate the governing equations of the physical processes of the soil
vegetation-snowpack medium, including the surface energy balance equation,
Richards’ [12] equation for soil hydraulics, the diffusion equation for soil heat
transfer, the energy-mass balance equation for the snowpack, and the Jarvis [11]
equation for the conductance of canopy transpiration.

2.5 Variable Infiltration Capacity (VIC) Model

Variable Infiltration Capacity (VIC) model is a macroscale hydrologic model,
written in C, being developed at the University of Washington and Prince-
ton University. The VIC code repository along with the model description
and source code documentation is publicly available at the Princeton web-
site [7]. VIC is used in macroscopic land use models such as SEA - BASINS
(http://boto.ocean.washington.edu/seasia/intro.htm). VIC is a semi-distributed,
grid-based hydrological model, which parameterizes the dominant hydromete-
orological processes taking place at the land surface - atmospheric interface.
The execution of VIC model requires preprocessed data such as precipitation,
temperature, meteorological forcing, soil and vegetation parameters, etc. as
input. The model uses three soil layers and one vegetation layer with energy
and moisture fluxes exchanged between the layers. The VIC model represents
surface and subsurface hydrologic processes on a spatially distributed (grid cell)
basis. Partitioning grid cell areas to different vegetation classes can approximate
sub-grid scale variation in vegetation characteristics. VIC models the processes
governing the flux and storage of water and heat in each cell-sized system of
vegetation and soil structure. The water balance portion of VIC is based on
three concepts: 1) Division of grid-cell into fraction sub-grid vegetation cover-
ages.

6

2) The variable infiltration curve for rainfall/runoff partitioning at the land sur-
face.
3) A baseflow/deep soil moisture curve for lateral baseflow.

Water balance calculations are preformed at three soil layers and within a
vegetation canopy. An energy balance is calculated at the land surface. A full
description of algorithms in VIC can be found in the references listed at the
VIC website.

2.6 GrADS-DODS Server

A GrADS-DODS Server (GDS) is a data server built upon the Grid Analysis
and Display System (GrADS) and the Distributed Oceanographic Data System
(DODS).

GrADS is an earth science data manipulation and visualization tool under
development at the Center for Ocean-Land-Atmosphere Studies (COLA) (http:
//http://grads.iges.org/cola.html). See http://grads.iges.org/grads/
grads.html for more detailed information about GrADS.

DODS, also called the Open source Project for a Network Data Access Pro-
tocol (OPeNDAP), is a protocol for serving data-sets stored in various formats
over a network. See http://www.unidata.ucar.edu/packages/dods/ for more
detailed information about DODS.

A GDS may be used to provide the LIS driver with the forcing and input
parameter data needed to run an LSM.

A GDS is an optional component of the LIS system. LIS may be run without
using a GDS to access the forcing and input parameter data-sets. All necessary
forcing and input parameter data-sets may be stored on locally-accessable hard-
disks and read in directly by the LIS driver, provided the computer system has
sufficient memory.

The intent of a GDS for the LIS project is to provide the LIS driver with
subsets of the forcing and input parameter data-sets, so that large-scale, high-
resolution domains may be broken-up/parallelized and processed across many
compute-nodes of a Beowulf cluster.

7

http://http://grads.iges.org/cola.html
http://http://grads.iges.org/cola.html
http://grads.iges.org/grads/grads.html
http://grads.iges.org/grads/grads.html
http://www.unidata.ucar.edu/packages/dods/

3 Coding and Documentation Conventions

This section describes some of the coding and documentation conventions [1]
that are helpful for developers of LIS.

3.1 Coding conventions

LIS is implemented using the Fortran 90 and C programming languages. Since
different Fortran compilers parse source files differently depending on file ex-
tensions such as f, f77, F, f90, and F90, the task of porting code to different
platforms is a hard process. Therefore, Fortran additions and contributions to
LIS code are expected to be written using the Fortran 90 dialect, and the sources
files must have an F90 extension. Some of the style guidelines followed in LIS
are as follows:

• Preprocessor: C preprocessor (cpp) is used wherever the use of a language
preprocessor is required. The Fortran compiler is assumed to have the
ability to run the preprocessor as part of the compilation process. The
preprocessing tokens are written in uppercase to distinguish them from
the Fortran code.

• Loops: All loops in Fortran are structured using do-enddo constructs as
opposed to numbered loops.

• Indentation: Code with nested if blocks and do loops are expected to be
indented for readability.

• Modules: Modules must be named the same as the file in which they reside.
This is enforced due to the fact that make programs build dependencies
based on file names.

• Implicit none: All variables in different modules should be explicitly typed,
and this should be enforced by the use of the “implicit none” statement.

3.2 Documentation conventions

LIS uses an in-line documentation system that allows users to create both web-
browsable (html) and print-friendly(ps/pdf) documentation. Each function,
subroutine, or module includes a prologue instrumented for use with the ProTex
auto-documentation script [5]. The following examples describe the documen-
tation templates used in LIS.

8

Templates for routines that are not internal to modules.

!---
! NASA/GSFC Land Information Systems LIS 2.3
!---
!BOP
!
! !ROUTINE:
!
! !INTERFACE:
!
! !USES:
!
! !INPUT PARAMETERS:
!
! !OUTPUT PARAMETERS:
!
! !DESCRIPTION:
!
! !BUGS:
!
! !SEE ALSO:
!
! !SYSTEM ROUTINES:
!
! !FILES USED:
!
! !REVISION HISTORY:
!
! 27Jun02 Username Initial specification
!
!EOP
!---
!BOC
!EOC

9

Template for a module :

!---
! NASA/GSFC Land Information Systems LIS 2.3
!---
!BOP
!
! !MODULE:
!
! !PUBLIC TYPES:
!
! !PUBLIC MEMBER FUNCTIONS:
!
! !PUBLIC DATA MEMBERS:
!
! !DESCRIPTION:
!
! !REVISION HISTORY:
!
! 27Jun02 Username Initial specification
!
!EOP

10

Template for a C file:

//---
// NASA/GSFC Land Information Systems LIS 2.3
//---
//BOP
//
// !ROUTINE:
//
// !INTERFACE:
//
// !USES:
//
// !INPUT PARAMETERS:
//
// !OUTPUT PARAMETERS:
//
// !DESCRIPTION:
//
// !BUGS:
//
// !SEE ALSO:
//
// !SYSTEM ROUTINES:
//
// !FILES USED:
//
// !REVISION HISTORY:
//
// 27Jun02 Username Initial specification
//
//EOP
//---
//BOC
//EOC

11

4 Customizable Features in LIS

The LIS driver is designed with extensible interfaces for facilitating easy incor-
poration of new features into LIS. The LIS driver uses advanced features of the
Fortran 90 programming language, which are especially suitable for object ori-
ented programming. The object oriented style of design adopted in LIS enables
the driver to provide well defined interfaces or “plug points” for enabling rapid
prototyping and development of new features and applications into LIS.

The LIS driver includes a number of functional extensions including:

• land surface model: Interfaces for adding new land surface models.

• base forcing: Interfaces for adding new model forcing schemes.

• observed forcing: Interfaces for adding observational forcing products.

• domain: Using a user specified domain or a subdomain of interest.

• parameters: Specifying custom defined data-sets.

4.1 Function Tables

The modules in LIS are constructed using a component-based design, with each
module/component representing a program segment that is functionally related.
The customizable interfaces in LIS are designed using a number of virtual func-
tion tables and the actual delegation of the calls are done at run-time by resolv-
ing the function names from the table. The C language allows the capability
to store functions, table them, and pass them as arguments. The Fortran 90
programming language allows passing of functions as arguments. By combining
these features of both languages, LIS uses a complete set of operations with
function pointers.

Figure 1 illustrates how the function tables work in LIS. A function is stored
in the table typically by a register function, that simply stores the pointer to
the function at the specified index. When the function needs to be accessed,
a generic call is made which resolves into a specific call depending on the in-
dex specified. This type of implementation helps in defining generic calls in
the driver and to include only the components of interest while compiling and
building the executable. For simplicity, throughout this document the word
“registry” is used to refer to a function table.

The LIS 3.0 source code available from the LIS website contains a number of
subdirectories, which are organized as components. The top level organization
of the source (src) is as follows:

12

Directory Name Synopsis
driver LIS driver routines
baseforcing Routines to call model forcing methods
obsprecips Routines to call observed precipitation products
obsrads Routines to call observed radiation products
forcing-plugin Routines that define registries for forcing schemes
lsm-plugin Routines that defines registries for land surface models
lsms Contains land surface model codes

4.2 Defining source directories for compilation

A file called Filepath in the $WORKING/LIS/src/make directory specifies all
the source files that will be included during compilation. A sample Filepath is
shown below.

../driver

../lsm-plugin

../forcing-plugin

../iplib

../baseforcing/geos

../baseforcing/gdas

../obsprecips/cmap

../obsrads/agrmet

../lsms/noah.2.6

../lsms/mosaic

../lsms/vic

../lsms/clm2

../lsms/clm2/main

../lsms/clm2/biogeophys

../lsms/clm2/biogeochem

../lsms/clm2/camclm_share

../lsms/clm2/csm_share

../lsms/clm2/riverroute

../lsms/clm2/ecosysdyn

4.3 Defining components while building the executable

As described earlier, the design of LIS allows users to define and include only
the components of interest while building the executable. Since Fortran is not
a truly object oriented language, this type of runtime polymorphism can only
be simulated in software.

The LIS developers guide describes how new land surface models, forcing
schemes, etc. can be included in LIS. This is achieved by allowing the user to
specify the extensible interfaces such as the ones provided in $WORKING/LIS/src/lsm-
plugin and $WORKING/LIS/src/forcing-plugin directories. Once the user spec-
ifies the components to be used in these interfaces, the Filepath directory can

13

be modified to include only these components. For example, if a user is inter-
ested in running only one land surface model (say Noah), using only the GEOS
forcing scheme, and no observational forcing products, the Filepath directory
reduces to:

../driver

../lsm-plugin

../forcing-plugin

../iplib

../baseforcing/geos

../lsms/noah.2.6

The extensible interfaces need to be defined as follows:
The lsm plugin method in $WORKING/LIS/src/lsm-plugin/lsm pluginMod.F90

needs to be defined as:

subroutine lsm_plugin
use noah_varder, only : noah_varder_ini
external noah_main
external noah_setup
external noahrst
external noah_output
external noah_f2t
external noah_writerst
external noah_dynsetup

call registerlsmini(1,noah_varder_ini)
call registerlsmsetup(1,noah_setup)
call registerlsmdynsetup(1,noah_dynsetup)
call registerlsmrun(1,noah_main)
call registerlsmrestart(1,noahrst)
call registerlsmoutput(1,noah_output)
call registerlsmf2t(1,noah_f2t)
call registerlsmwrst(1,noah_writerst)

end subroutine lsm_plugin

The baseforcing plugin method in $WORKING/LIS/src/forcing-plugin/baseforcing pluginMod.F90
needs to be defined as:

subroutine baseforcing_plugin
use geosdomain_module
external getgeos
external time_interp_geos
call registerget(2,getgeos)
call registerdefnat(2,defnatgeos)
call registertimeinterp(2,time_interp_geos)

end subroutine baseforcing_plugin

14

The precipforcing plugin method in $WORKING/LIS/src/forcing-plugin/precipforcing pluginMod.F90
and the radforcing plugin method in $WORKING/LIS/src/forcing-plugin/radforcing pluginMod.F90
can be left empty as follows:

subroutine precipforcing_plugin

end subroutine precipforcing_plugin

subroutine radforcing_plugin

end subroutine radforcing_plugin

Similarly, different combinations of using the components can be implemented
defining the interfaces appropriately and chosing the corresponding source files
through the Filepath file.

15

1 f1()

Function Table

Index Function

2 f2()

. .
 .

.

. .
 .

.

Register step

call register(1,f1)
call register(2,f2)

Retrieval step

call retrieve (1)

call retrieve (2)

returns f1()

returns f2()

Figure 1: Example of a function table implementation

16

5 Customizing LIS to use new land surface mod-
els

The lsm-plugin directory contains the lsm pluginMod module that can be used to
customize and define land surface models in LIS. The lsm pluginMod contains
a lsm plugin method that defines a number or registries to capture the basic
offline operations of a land surface model. The registries can be used to define
functions to perform the following tasks:

• initialization:
Definition of land surface model variables, allocation of memory, reading
run-time parameters, etc.

• setup:
Initialization of land surface model parameters.

• dynamic setup:
Routines to initialize or update time dependent parameters.

• run:
Routines to execute land surface model on a single gridcell for a single
timestep.

• write restart:
Routines to write restart files

• read restart:
Routines to read restart files

• output:
Routines to write output

• transfer of forcing data to model tiles:
Routines that provides an array of forcing variables for each gridcell.

The following example shows how the registry functions are defined for Noah
land surface model.

call registerlsmini(1,noah_varder_ini)
call registerlsmsetup(1,noah_setup)
call registerlsmdynsetup(1,noah_dynsetup)
call registerlsmrun(1,noah_main)
call registerlsmrestart(1,noahrst)
call registerlsmoutput(1,noah_output)
call registerlsmf2t(1,noah_f2t)
call registerlsmwrst(1,noah_writerst)

17

The registry functions defined for noah are:
noah varder ini Initialization for Noah
noah setup Sets up Noah’s parameters
noah dynsetup Sets up Noah’s time dependant parameters
noah main Runs the Noah model on a single gridcell at a timestep
noahrst Reads the Noah restart files
noah output Writes output of Noah runs
noah writerestart Writes Noah’s restart files
noah f2t Transfers forcing data to Noah model tiles

The index used for Noah’s functions in this case is 1. The index needs to be
the same for all registry defintions for a particular model. The user, however,
may define any integer value as the index chosen for a land surface model. The
corresponding index needs to be specified in the lis card file (LIS%d%LSM); i.e.,
for this example, if the Noah model is used, LIS%d%LSM should be assigned a
value of 1. 1

The following code segment shows an example of defining two different land
models (CLM and Noah) to be included in the LIS executable. The same
procedure can be extended to define more models, or customize LIS to use only
the models of interest.

call registerlsmini(1,noah_varder_ini)
call registerlsmini(2,clm_varder_ini)

call registerlsmsetup(1,noah_setup)
call registerlsmsetup(2,clm2_setup)

call registerlsmdynsetup(1,noah_dynsetup)
call registerlsmdynsetup(2,clm2_dynsetup)

call registerlsmrun(1,noah_main)
call registerlsmrun(2,driver)

call registerlsmrestart(1,noahrst)
call registerlsmrestart(2,clm2_restart)

call registerlsmoutput(1,noah_output)
call registerlsmoutput(2,clm2_output)

call registerlsmf2t(1,noah_f2t)
call registerlsmf2t(2,atmdrv)

call registerlsmwrst(1,noah_writerst)
call registerlsmwrst(2,clm2wrst)

1The LIS development team has assigned Noah = 1, CLM = 2, and VIC = 3 for the
LIS%d%LSM variable. While these numbers may be over-ridden, care must be taken. LIS’
documentation refers to this variable as thus stated.

18

The run-time specific parameters for a land surface model can be read in
at run-time through the LIS card file. The user needs to specify a customized
namelist and provide routines for reading the same. For Noah runs, the LIS
card file contains a namelist segment such as:

&noah
noahdrv%WRITEINTN = 3
noahdrv%NOAH_RFILE = "noah.rst"
noahdrv%NOAH_MGFILE = "/X6RAID/MODIS-0.25/"
noahdrv%NOAH_ALBFILE = "/X6RAID/MODIS-0.25/"
noahdrv%NOAH_VFILE = "BCS/noah_parms/noah.vegparms.txt"
noahdrv%NOAH_SFILE = "BCS/noah_parms/noah.soilparms.txt"
noahdrv%NOAH_MXSNAL = "/X6RAID/MODIS-0.25/maxsnalb.bfsa"
noahdrv%NOAH_TBOT = "/X6RAID/MODIS-0.25/tbot.bfsa"
noahdrv%NOAH_ISM = 0.30
noahdrv%NOAH_IT = 290.0
noahdrv%NOAH_NVEGP = 7
noahdrv%NOAH_NSOILP = 10
/

The namelist specifies variables such as locations of land surface model spe-
cific parameter files, output writing intervals, initial conditions, etc. The routine
to read these variables is typically done during initialization of the land surface
model. The program segment for Noah is shown below as an example. For an
explanation of other routines, please refer to the source code documentation.

!--
! Reads the Noah name list
!--
if (masterproc) then

call readnoahcrd(noahdrv)
endif

!--
! Defines the derived types for MPI, and broadcasts the
! namelist variables to all processors. This step can be
! skipped if using a sequential execution.
!--

call def_noahpar_struct
call MPI_BCAST(noahdrv, 1, MPI_NOAHDRV_STRUCT, 0, &

MPI_COMM_WORLD, ierr)
!---
! Allocates Memory for Noah variables
!---

if (masterproc) then
allocate(noah(nch))

19

else
allocate(noah(di_array(iam)))

endif

The src/driver directory contains a number of modules that provides helpful
variables that may be required while defining land surface model specific rou-
tines. Some of the useful modules and the variables provided by them are listed
below. For more details, please refer to the source code documentation.

Module name Provides
time manager Variables and routines for time management
lisdrv module grid: Vector representation of the running domain grid

tile: Vector representation of the running domain tiles
gindex: Mapping of the running domain grid to
the corresponding 2-D grid

grid spmdMod Variables and routines that define domain
decomposition of the vector grid space

tile spmdMod Variables and routines that define domain
decomposition of the vector tile space

def ipMod Variables and routines that are required to
carry out spatial interpolation of scalar data

20

6 Customizing LIS to use new forcing schemes

The boundary conditions describing the (upper) atmospheric fluxes are known as
“forcings”. LIS makes use of model derived data as well as satellite and ground-
based observational data as forcings. The land surface models are typically
run using model derived data. The observational data is used to overwrite the
model derived data, whenever they are available. LIS driver provides interfaces
to incorporate model derived (base) forcing schemes as well as observational
(currently for radiation and precipitation products) forcing schemes.

The forcing-plugin directory contains modules baseforcing pluginMod, pre-
cipforcing pluginMod, and radfocing pluginMod, that can be used to customize
and define base forcing schemes, observed precipitation forcing schemes, and
observed radiation forcing schemes, respectively. These modules provide plugin
routines baseforcing plugin, precipforcing plugin, and radforcing plugin, respec-
tively.

baseforcing module provides registries to define functions to perform the fol-
lowing tasks.

• definition of native domain:
Routines to define the native domain of the forcing data, read run-time
specific parameters through a namelist, etc.

• retrieval of forcing data:
Routines to retrieve the forcing data, and interpolate them.

• temporal interpolation:
Routines to interpolate data temporally.

The following code segment shows how two baseforcing schemes are included
in LIS.

call registerdefnat(1,defnatgdas)
call registerdefnat(2,defnatgeos)

call registerget(1,getgdas)
call registerget(2,getgeos)

call registertimeinterp(1,time_interp_gdas)
call registertimeinterp(2,time_interp_geos)

Similar to the case in lsm pluginMod, the indices used in the registries need
to be consistent for a particular scheme. In the example shown above, the GDAS
forcing scheme is assigned index 1, and the GEOS forcing scheme is assigned 2.
These indices are arbitrary, but the indices used in the card file (LIS%d%FORCE)
should reflect the ones defined in the registry. i.e., if GEOS forcing scheme is to
be used, LIS%d%FORCE should be assigned a value of 2. 2

2The LIS development team has assigned GDAS = 1, and GEOS = 2 for the LIS%d%FORCE

variable. While these numbers may be over-ridden, care must be taken. LIS’ documentation
refers to this variable as thus stated.

21

The run-time specific parameters for a forcing scheme can be specified at run-
time through the lis card file. The user needs to specify a customized namelist
and provide routines for reading the same. For GEOS runs, the section of the
lis card file contains a namelist segment such as:

&geos
geosdrv%GEOSDIR = "/X6RAID/DATA/GEOS/BEST_LK"
geosdrv%NROLD = 181
geosdrv%NCOLD = 360
geosdrv%NMIF = 13
/

The namelist specifies variables such as locations of forcings files, the native
domain sizes, the number of variables in each file, etc. The routine to read
these parameter is done typically while defining the native domain parameters
of the forcing scheme. A sample routine for GEOS forcing scheme is shown
below.

!--
! Reads the GEOS name list
!--

call readgeoscrd(geosdrv)
!--
! Defines the native GEOS domain as a kgds array
!--

kgdsi(1) = 0
kgdsi(2) = geosdrv%ncold
kgdsi(3) = geosdrv%nrold
kgdsi(4) = -90000
kgdsi(7) = 90000
kgdsi(5) = -180000
kgdsi(6) = 128
kgdsi(8) = 179000
kgdsi(9) = 1000
kgdsi(10) = 1000
kgdsi(20) = 255
mi = geosdrv%ncold*geosdrv%nrold

precipforcing module provides registries to define functions to perform the
following tasks.

• definition of native domain:
Routines to define the native domain of the forcing data, read run-time
specific parameters through a namelist, etc.

• retrieval of forcing data:
Routines to retrieve forcing data and interpolate them.

22

The following code segment shows how the CMAP precipitation scheme is
included in LIS.

call registerdefnatpcp(4,defnatcmap)
call registerpget(4,getcmap)

The indexing scheme is similar to the cases described above. In this case,
the CMAP scheme is assigned an index of 4. LIS%f%GPCPSRC in the card file
should correspond to the indices defined in the registries. A value of 0 indicates
that no observed precipitation scheme will be employed.

The customized namelist section for CMAP is shown below.

&cmap
cmapdrv%CMAPDIR = "./input/CMAP"
cmapdrv%NROLD = 181
cmapdrv%NCOLD = 360
/

The namelist specifies variables such as locations of forcings files, the native
domain sizes, etc. The routine to read these parameter is done typically while
defining the native domain parameters, similar to the base forcing case.

The design of radforcing module is similar to the cases described above. The
registry functions for this module are:

• definition of native domain:
Routines to define the native domain.

• retrieval of forcing data:
Routines to retrieve and interpolate data.

• Interpolate data in time:
Temporallly interpolate data.

An example of using AGRMET observed radiation scheme is shown below.

call registerrget(1,getgrad)
call registerdefnatrad(1,defnatagrmet)
call registerrti(1,time_interp_agrmet)

The indices defined for observed radiation schemes correspond to the LIS%f%RADSRC
in the card file. The value is defined to be 0 if no observed radiation schemes
are used.

As mentioned earlier, the modules in src/driver can be used in defining
routines needed for defining a forcing scheme in LIS. Please refer to the source
code documentation for details.

23

7 Customizing LIS for a new domain

The LIS driver is designed to be domain independent. The parameters used to
define the domain are designed to be run-time options. The domain namelist of
the card file specifies the domain information in LIS. LIS uses an array called
dd that contains domain definition parameters.

The domain section in the card file defines two types of domains:

• Running domain: defines the domain over which the simulation is carried
out.

• Data domain: defines the domain over which the parameter data is de-
fined.

Currently it is assumed that all the parameter data are defined on the same
domain. In future releases, the flexibility to define domains for each type of
data will be implemented. dd array index 1 defines the grid-type (currently
only Latitude/Longitude is supported), indices from 2 to 7 defines the running
domain, and indices 8 to 13 defines the data domain. The ability to define a
running domain different from the data domain enables the user to carry out
simulations in only the area of interest.

Variable Description
dd(1) 0 = Equidistant cylindrical
dd(2) Latitude of the south-west grid-cell center for the

running domain
dd(3) Longitude of the south-west grid-cell center for the

running domain
dd(4) Latitude of the north-east grid-cell center for the

running domain
dd(5) Longitude of the north-east grid-cell center for the

running domain
dd(6) Latitudinal increment of the running domain
dd(7) Longitudinal increment of the running domain
dd(8) Latitude of the south-west grid-cell center for the

parameter data domain
dd(9) Longitude of the south-west grid-cell center for the

parameter data domain
dd(10) Latitude of the north-east grid-cell center for the

parameter data domain
dd(11) Longitude of the norht-east grid-cell center for the

parameter data domain
dd(12) Latitudinal increment of the parameter data domain
dd(13) Longitudinal increment of the parameter data domain

The LIS driver currently supports Latitude/Longitude.The support for other
types of grids are in development. The user is expected to provide parameter
data that is consistent with the domain specified at run-time. The details of
specifying the domain parameters is explained in the next section.

24

7.1 Domain Example

This section describes how to compute the values for the dd array.
First, we shall generate the values for the parameter data domain. These

are the values for dd(8) – dd(13). LIS’ parameter data is defined on a Lati-
tude/Longitude grid, from −180 to 180 degrees longitude and from −60 to 90
degrees latitude.

Since the parameter data is on a Latitude/Longitude grid, we set

dd(1) = 0

For this example, consider running at 1/4 deg resolution. The coordinates
of the south-west and the north-east points are specified at the grid-cells’ centers.
Here the south-west grid-cell is given by the box (−180,−60), (−179.750,−59.750).
The center of this box is (−179.875,−59.875). 3

dd(8) = -59.875
dd(9) = -179.875

The north-east grid-cell is given by the box (179.750, 89.750), (180, 90). Its
center is (179.875, 89.875).

dd(10) = 89.875
dd(11) = 179.875

Setting the resolution (0.25 deg) gives

dd(12) = 0.25
dd(13) = 0.25

And this completely defines the parameter data domain.
If you wish to run over the whole domain defined by the parameter data

domain then you simply set the values of dd(2) – dd(7) equal to the values
given by dd(8) – dd(13). This gives

dd(2) = -59.875
dd(3) = -179.875
dd(4) = 89.875
dd(5) = 179.875
dd(6) = 0.25
dd(7) = 0.25

Now say you wish to run only over the region given by (−97.6, 27.9), (−92.9, 31.9).
Since the running domain is a sub-set of the parameter domain, it is also a Lat-
itude/Longitude domain at 1/4 deg. resolution. Thus,

dd(6) = 0.25
dd(7) = 0.25

3Note, these coordinates are ordered (longitude, latitude).

25

Now, since the running domain must fit onto the parameter domain, the
desired running region must be expanded from (−97.6, 27.9), (−92.9, 31.9) to
(−97.75, 27.75), (−92.75, 32.0). The south-west grid-cell for the running domain
is the box (−97.75, 27.75), (−97.5, 28.0). Its center is (−97.625, 27.875); giving

dd(2) = 27.875
dd(3) = -97.625

The north-east grid-cell for the running domain is the box (−93, 31.75), (−92.75, 32.0).
Its center is (−92.875, 31.875); giving

dd(4) = 31.875
dd(5) = -92.875

This completely defines the running domain.
Note, the LIS project has defined 5 km resolution to be 0.05 deg. and 1 km

resolution to be 0.01 deg. If you wish to run at 5 km or 1 km resolution, redo
the above example to compute the appropriate grid-cell values.

See Figure 2 for an illustration of adjusting the running grid. See Figures 3
and 4 for an illustration of the south-west and north-east grid-cells.

26

Figure 2: Illustration showing how to fit the desired running grid onto the actual
grid

27

Figure 3: Illustration showing the south-west grid-cell corresponding to the
example in Section 7.1

28

Figure 4: Illustration showing the north-east grid-cell corresponding to the ex-
ample in Section 7.1

29

8 Customizing LIS for Input data

LIS allows the user to specify a number of input data-sets at run-time through
the card file. These data-sets are expected to be consistent with the type of do-
main and resolution specified. Land model specific parameter data are expected
to be specified in the namelists specific to each land model. The input data for
models in LIS are divided into three categories:

• Soils data: static

• Vegetation data: some static and some dynamic

• Meterological data: at different frequencies

The soil and vegetation data are used to specify the characteristics of the land
surface and the meterological data to provide forcing at the upper boundary
of the land surface. A detailed description of parameter data used in LIS are
available at http://lis.gsfc.nasa.gov/Data/index.shtml.

8.1 Soils data

LIS provides a number of overlapping data-sets for specifying soil hydraulic
properties: sand, clay, silt, and organic texture fractions, porosity maps, etc.

The following labels describe the format the data files are written in.

bfsa - binary, sequential access

txt - text

bfda - binary, direct acess

Data file Description Format
LIS%p%SAFILE Sand fraction map file bfsa
LIS%p%CLFILE Clay fraction map file bfsa
LIS%p%ISCFILE Soil color map file bfsa
LIS%p%ELEVFILE Elevation difference file bfsa

Some of the model specific parameter data are specified below:

noahdrv%noah sfile Noah soil parameter file txt
vicdrv%vic sfile VIC soil parameter file txt

8.2 Vegetation data

LIS uses a number of files to specify both static and time-varying vegetation
properties. Some of the files are:

30

http://lis.gsfc.nasa.gov/Data/index.shtml

LIS%p%MFILE Land/Water map file for modeling bfsa
LIS%p%VFILE Vegetation classification map file bfsa
LIS%p%AVHRRDIR Location of AVHRR-based LAI/SAI files bfda
LIS%p%MODISDIR Location of MODIS-based LAI/SAI files bfda

CLM

clmdrv%clm2 vfile CLM mapping from UMD to plant functional types txt

Noah

noahdrv%noah mgfile Location of monthly veg. greenness fraction bfsa
noahdrv%noah albfile Location of quarterly snow free albedo bfsa
noahdrv%noah vfile Noah static vegetation parameter file txt
noahdrv%noah mxsnal Maximum snow free albedo bfsa
noahdrv%noah tbot Bottom temperature bfsa

VIC

vicdrv%vic veglibfile VIC vegetation parameter file txt

8.3 Meterorological data

LIS includes a number of forcing schemes, both model-derived as well as obser-
vation based. A summary of the forcing data schemes implemented in LIS are
shown below.

Forcing scheme Type Frequency
GEOS model derived 3 hourly
GDAS model derived 3 hourly
AGRMET observational (radiation) hourly
CMAP observational (precipitation) 3 hourly

Implementation of other forcing schemes is currently under development.

31

References

[1] Community climate system model, software developers guide.
http://www.ccsm.ucar.edu/csm/working−groups/Software/dev−guide/dev−guide/.

[2] Community land model. http://www.cgd.ucar.edu/tss/clm.

[3] GrADS. http://grads.iges.org/grads/grads.html.

[4] Noah land surface model. http://www.emc.ncep.noaa.gov/mmb/gcp/noahlsm/README−2.2.htm.

[5] Protex documentation system. http://gmao.gsfc.nasa.gov/software/protex.

[6] DODS. http://www.unidata.ucar.edu/packages/dods/.

[7] Variable infiltration capacity (vic) model.
http://www.hydro.washington.edu/Lettenmaier/Models/VIC/VIChome.html.

[8] W3fi63 program. http://dss.ucar.edu/datasets/ds609.1/software/mords/w3fi63.f.

[9] G. J. Collatz, C Grivet, J. T. Ball, and J. A. Berry. Physiological and
environmental regulation of stomatal conducatance: Photosynthesis and
transpiration: A model that includes a laminar boundary layer. Agric.
For. Meteorol., 5:107–136, 1991.

[10] Chen. F., Mitchell. K., Schaake. J, Xue. J, Pan. H, Koren. V., Ek. M Duan,
and A. Betts. Modeling of land-surface evaporation by four schemes and
comparison with fife observations. J. Geophys. Res., 101(D3):7251–7268,
1996.

[11] P. G. Jarvis. The interpretation of leaf water potential and stomatal con-
ductance found in canopies of the field. Phil. Trans. R. Soc., 273:593–610,
1976.

[12] L. A. Richards. Capillary conduction of liquids in porous media. Physics,
1:318–333, 1931.

[13] E. Rogers, T. L. Black, D. G. Deaven, G. J. DiMego, Q. Zhao, M. Baldwin,
N. W. Junker, and Y. Lin. Changes to the operational ”early” eta anal-
ysis/forecast system at the national centers of environmental prediction.
Wea. Forecasting, 11:391–413, 1996.

32

	Introduction
	Background
	LIS
	LIS driver
	Community Land Model (CLM)
	The Community Noah Land Surface Model
	Variable Infiltration Capacity (VIC) Model
	GrADS-DODS Server

	Coding and Documentation Conventions
	Coding conventions
	Documentation conventions

	Customizable Features in LIS
	Function Tables
	Defining source directories for compilation
	Defining components while building the executable

	Customizing LIS to use new land surface models
	Customizing LIS to use new forcing schemes
	Customizing LIS for a new domain
	Domain Example

	Customizing LIS for Input data
	Soils data
	Vegetation data
	Meterorological data

